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A sufficient criterion for an absolutely minimal weight design in application to plates 
(disks) of variable thickness H working under plane stress state conditions is established 
in [i, 2]. By writing the fundamental equations in a coordinate system whose coordinate 
lines are trajectories of the main stresses, isostats, the authors of [3] showed that four 
kinds of solutions exist for designs satisfying the condition of constant specific dissipa- 
tion rate under the Treska fluidity condition. It is proved in [4] that this condition is 
also a necessary condition for an absolutely minimal weight design for the sides of the Treska 

hexagon. The characteristics of the equations describing the optimal designs of disks for 
an arbitrary smooth fluidity condition were studied in [5]. By using available stress fields~ 
the optimal thicknesses of plane elements in the shape of T-plates and extensible polygonal 
plates with circular and square holes were calculated in [6]. A finite element approach to 
the problem under consideration is developed in [7]. The mass forces were assumed zero in 
[3-7]. 

It should be noted that at this time there are no papers in the literature concerned 
with taking account of mass forces in the problem of optimal disk design, with the exception 
of [2] where the particular problem of the minimum weight design for a rotating circular disk 
is considered for one of the kinds of boundary conditions�9 

The present paper has the goal of filling this gap somewhat. 

i. We take the coordinate plane x* = 0 as middle plane. Forces F*, F* independent of H 
act over part of the boundary F F in the middle plane of the disk. The velocities are zero 
on the other part of the boundary F U. The mass forces g~, g* referred to unit volume also 
act in the middle plane. The assumption of a plane stress state implies ~'3 = ~3 = o~3 = 0. 

We let u~, Okl' m~Z~ Ok, s~ denote, respectively, the velocity, stress tensor, strain ratetensor, 
principal stress/~and principal strain rate components. The subscripts k, 7 later take the 
values I, 2 everywhere We go over to the dimensionless quantities Xk = xSxo I - * -~ �9 , u k - u~toxo , 
h : H H o  - * - * - " where , SkZ - skit~ a k - akto, F k - Fk~o Ho , gk = 
o o, to, Xo, Ho are the characteristic stress, time, length, and thickness of the plate. The 
components are functions of just x~, x2 and satisfy the equilibrium equations 

(<skis,), z + g~1~ = o (i. i) 

and the boundary conditions on ? F 

(~h~h)nt ---- Fh, I. 2) 

where n~ are components of the unit normal to the line ?F" The plate material is assumed iso- 
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tropic, ideally plastic, and with a piecewise-linear potential (Fig. i). In this connection, 

two important kinds of optimal designs occur: disks corresponding to the sides AiAi+ I and disks 

corresponding to the vertex A i, 

The equation of the side AiAi+1 has the form 

/ : a i~l  + b i ~  = t, ( 1 . 3 )  

where 

ai : - -  Qid~ 1; bi = Pid~ 1; Pi : P i + l - -  Pi; ( 1 . 4 )  

Qi = qi+z - qi, di = Pi+lqi -- Piqi+z, (Pi, qi) are the coordinates of the vertex A i. We write 
the known relationships [8] as 

2(~1 ,  ~ }  = ~I + % ! (~1 - -  ~2) cos2O, 2~1~ = ( ~  - -  ~ ) s i n 2 0 ;  ( 1 . 5 )  

2[eli , e22 ~ = e i ~ e 2 ~ (g i - -  %)COS20, 2ei2 = (e I - -  e2) siI120 , ( 1 . 6 )  

where ~ is the angle between the first principal direction and the x~ axis, Let us also write 

down the Cauchy formula 

2~hI = ug,t + ut,h" (1.7) 

2. We consider the optimal designs corresponding to the side AiAi+~. The flow law for 

the side AiAi+1 has the form 

el : ~a i,  e2 = ~bi, ~ ~ O, ( 2 . 1 )  

The condition for constant modified dissipative function is A = Ok~k -- gkUk = const, from 

which 

= gguh + ~, A = const.  ( 2 . i )  

Equations (i.i), (1,3), (i,5)-(1.7), (2.1), (2.2) form a closed system of fifteen equations 
with fifteen unknown functions. We show that in the case of constant mass forces this sys- 
tem is successfully reduced to a system of four quasilinear first-order partial differential 

equations. 

Let gk be certain constants. We introduce the notation 

= 0.5~ -l(ui,2 - -  u: , l ) , s i  : 0.5(hi - -  ai), t ~ = 0.5(b i + a~). ( 2 . 3 )  

By virtue of (1.6 , (1.7), (1.9), (2.1)-(2.3), we have 

{eli, e~2} = L(t i 7 s i c o s 2 0 ) ,  ~12 = - -  ~ s i s i n 2 0 ;  ( 2 . 4 )  

~,~= g1r + g~(el~ - -  ~L), ~,~ = g ~ ( ~  + ~ )  + g~%~. ( 2 . 5 )  

Differentiating ~ with respect to xl, x~, replacing the partial derivatives of u k by using 

(1.7), and then utilizing (2.4) and (2.5), we arrive at the system 

23 i (0 ,1  COS 20 + 0,2 sin 20) - -  ~ ,1  = - -  g2 ( ~ 2  + t~ - -  8~),  
~ (2.6) 

2s~ (0,~ cos 20 - -  0,~ sin 20) + ~ = - -  ~ ( ~  + t~ - -  s~). 

If the solution ~, ~ of the system (2.6) is found, then we obtain a system to find the veloc- 

ity from (1.7), (2.3), (2.4) 

ug,~ = UhtL, w ~ r e  

Ugh== t i @ ( - - l ) ~ Q c o ~ 2 0 ;  U~t = ( - - l ) l o  - -  s i s i n 2 0 ; k  @ I. ( 2 . 7 )  

From (2.2) and (2.7) we have 

L h = V~L,w~reV h = gzUtg �9 (2.8) 

It is easy to see that the system (2.8) and the system (2.7) are compatible if only ~, 8 is 
a solution of (2,6). We write the system (2.8) in the form (Inl) k = V k, after which we find 
in 1~ and then u k from (2.7) by means of their total differentials. Therefore, taking account 
of (2.4) and (2.5) the system (2.6) is the strain compatibility condition. In the case s i # 0 
it contains two unknown functions and in the case s• = 0 (the segment AiAi+1 is parallel to 
the line ~ + ~= = 0) just one unknown function ~. We consequently consider these two cases 

separately. 
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In the case s i # 0 we set X = 0.5(~ + ~=), then 

{a~, %2} = Z i (C~Z + D~)c0s20, ~12 :(Ciz + Di) sin20, 

where C i = tis~ z, D i = --0.5s[ I. Substituting (2.9) into (i.i) and taking account of 
arrive at the system 

( 2 . 9 )  

( 2 . 6 ) ,  we 

h x [)r + (c#~ + D 0 cos 201 + h2 (C~Z + D 0 sin 20 ~- X,1 (t + C{ cos 20) -[- 

~-  )~2Ci Sill 20 - -  Si -1 (CiZ -~  Di) [o~2 -~ gl ( ~ + *~ -- s~)] h-I- glh = 0, ( 2 . 1 0 )  
h,~ (C~% + D 0 sin 20 + h.~ [% -- (C~% + D~) cos 201 + Z~ (t -- C~ cos 20) + %,~C~ sin 20 jr  

-t- sT1 ( t ie  -[- Di) [~o,1 -- g2 ( c~ + t~ -- s~)] h ~- g~h = O. 

Therefore, the problem is reduced to the solution of two systems of quasilinear equations 
(2.6) and (2.10). A system of inequalities 

+ h ~ O ,  P~Pi + Q i q ~ P i a ~ - ~ - Q i ~ P i P ~ + ~  Qiqt+l' A > O .  ( 2 . 1 1 )  

should also be appended to the system of equations obtained. 

The differential operator in the left side of (2.6) agrees, to the accuracy of the nota- 
tion, with the corresponding operator of the system of plain strain equations of an ideally 
plastic body [8]. Therefore, the system (2.6) is hyperbolic, its characteristic directions 
are y~ = tg ~, Y= = --ctg ~. The equation to find the characteristics of the system (2.10) 
(y = dx~/dxz) has the form 

-- y [~ + (C~ + D4) cos 20] + 
+ (C(E ~- D~) sin 20, 

- -  ? (Ci% -i- Di) sin 20 -l- % - -  
- (cy~ + Di) cos 20, 

- ~ (~ + c~ ~os 20) + ] 
+ C~ s i n  20,  I 

- - ' f C  i s i n 2 0 - 1 -  I =  
- -  Cicos 20, [ 

0, 

from which we obtain 73 = tg @, Y4 = ~tg 0. Therefore, the system (2.16), (2.10) is hyper- 
bolic with four real families of characteristics agreeing with the isostats. 

Let f~, f= be corresponding right sides in (2.8). The relationships on the character- 
istics (2.8) have the form [9] 

dx 2 = tg Odxl, d(o) - -  2s~ O) -~ f l d X l  - -  f 2 d x 2  = O, 

dx 2 = --ctg Odxi, d(o) ~ 2~ i O) ~- fldxl - - / 2 d x  2 = O. 

In the general case the system (2.6), (2.10) can be solved by using numerical methods [8, i0]~ 
However, in certian cases an analytic solution is obtained successfully. Let us note that 
for gy = g= = 0 the relationships on the characteristics (2.6) are represented in the form of 
total differentials. By analogy with this, we consider the situation when the expression fldxl -- 
f2dx2 is a total differential for nonzero gk" From this condition we obtain the equation 

whose general solution is 

where w~ is a certain function. 
is the solution of the equation 

~o(glo),~ + g2(o,~) = O, 

= ~~ l -- glx2), 

Here f~dxl -- f2dx= = dG, G = G~ -- g~x=) and G~ 

G O' (t) = - -  @ 2  (t) - -  s 2. - -  t2. 

Setting p~ = ~~ + G~ and p = p~ I -- glx2), we reduce the system (2.6) to the form 

2 s i ( O , 2 s i n 2 0 ~ O n c o s 2 0 ) - - p a =  0,2s~(O,~ cos20--O,ls in20 ) ~ p , 2 =  O. ( 2 . 1 2 )  

If p, O is known to be a solution of (2.12), then ~~ is found from the solution of the or- 
dinary differential equation 

J '  (t) - ~o2 (t) = pO, (t) T' q2 _ s~, 

whose general solution [11] is omitted because of its awkwardness. 

The equations for the characteristics of the system (2.12) are 
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dx= = tg0dx,,~ = p -- 2siO, & ~ = --ctg0&,, ~ = p ~ siO , 

Selecting g, > as new unknown functions, we convert (2.12) into the equivalent system 

~,1 + ~,~tgO = O, ~4tgO -- q.~ = O. (2.13) 

In the case when the Jacobian 

Y : 2 ~ , ~ , ~ ( s i n 2 0 ) - I  = - - 2 ~ , ~ , ~ ( s i n 2 0 ) - ~  

is not zero, replaced of the unknown functions by the independent variables, the system 

(2.13) can be reduced by a linear system [8]. This latter can be solved by numerical methods 

either by using trigonometric series or approximate integration. Some simple solutions are 

obtained when J = 0: I) ~, ~ -- const; 2) g -- const; 3) ~ -- const. Let us examine just the 

~irst case ~ = ~o, ~ = ~o. Then evidently ~ = @o, p = P0, and~ = i~~ -- g~x=), where the 

function ~~ is a solution of the equation 

whose general solution is 

2 2 co ~ (t) - co ~ (t) = q - -  q ,  

c e x p ( - - 2  V ~  t) + t ( 2 . 1 4 )  
o,o (,> = ,  V ' ~  c oxp ( -  ~ 1 / ~ * ) -  ~' if ~p~ < o, 

0 or (c -- t) -I, if aib i -- 0 

(c is the constant of integration). 

Let us introduce new independent variables Yk : nk~xT' where n11 = n== = cos @o, n12 = 

~2~ = sin @o. It is easy to reduce the system (2.10) to the form 
0 0 

a,j-~{[(i + C O Z + D ~ I  } + g  ~  ~ { [ ( l - - C i ) % - - O ~ ] h } + g % = 0 ,  

w h e r e  g~ = nkT~gT. T h i s  l a s t  s y s t e m  i s  n o n e  o t h e r  t h a n  t h e  s y s t e m  o f  e q u i l i b r i u m  e q u a t i o n s  
i n  t h e  c o o r d i n a t e s  y , y a  

~ (~hh) +g~h = 0. (2. 15~ 

L a t e r ,  f o r  s i m p l i c i t y  gO = 0.  From t h e  f i r s t  e q u a t i o n  i n  ( 2 . 1 5 ) ,  T,  = v~h = Y z ( Y 2 ) ,  w h e r e  
Y2(Y2) i s  a c e r t a i n  f u n c t i o n .  

I f  b i # 0 ,  t h e n  Ta = o=h = b ~ h  -- ~ i b : s  We s u b s t •  t h i s  e x p r e s s i o n  i n t o  t h e  
s e c o n d  e q u a t i o n  i n  (2 . 1 5 ) .  A f t e r  i n t e g r a t i n g  we o b t a i n  

~ p 

0 
Y2 

where YI(yl) is a certain function. 

If b i = 0, then ~i =- i/ai. From (2'.15) we obtain 

r~ : Y~ ('4), r~ - - ~ o  r~ ( ~ ) _  z (,~) ~'6 , 

Y2 

h aeY~ (:I~), ( 2 . 1 6 )  

where T k = Ok h and Yk(Yk) are certain functions. 

The functions Yk(Yk) are determined from the boundary conditions and should be subject 

to the system (2.11). For example, for b i = 0 we have 

aiY2 (Y2) ~ 0, %Q,~ g~Qi r l  (Yl) - Y2 (Y2) dgz y~ l  (g~) ~ qi+lQi ' A > 0. ( 2 . 1 7 )  

Y2 

For s i = 0 we set • = 0.5(oi -- o2), then 

{~i~.~2~}=m i• ~Iz=xsin20" 

We obtain two systems of equations from (i.i), (2.18), 

m~ = 0.567L (2.18) 

and (2.6) : 
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h,~(rn i -~- Z cos 20) ~- h,z Z sin 20 -~ Z,j~ cos 20 ~- ?(,~h sin 20 ~- 2%h(0,2 cos 20 - -  

- -  0,~ sin 20) -1- g~h = O, 

h,~ X sin 20 @ h,~(rni - -  Z cos 20) @ %,~h sin 20 - -  %,~h cos 29 -}- 2%h(0,~ cos 20 -r- 

-~ 0,.~ sin 20) ~ g.~h = O. 

( 2 . 1 9 )  

( 2 . 2 0 )  

It is easy to find the general solution of the system (2.19) 

~o = t i tg [(g2x~ - -  glX2)t i -~ C], 

where c is the constant of integration. Furthermore, the system (2.20) contains two equa- 
tions and three unknown functions. Consequently, one of the functions, say 0, can be given 
arbitrarily and the linear system of differential equations can be solved in terms of the two 

other functions. If 8 is given, then the boundary conditions on F F for the system (2.20) 
will be determined from the system (1.2) and (2.18). Let us note that there are no constraints 
on the function 8. Therefore, in the case s i = 0 ambiguity of the solution of the problem 
formulated above should be observed as was noted in [12]. 

The equation for the characteristics of the system (2.20) (8 is a known function) has the 
form mih sin 28(v 2 + 2~ ctg 2 -- i) = 0, from which ~i = tg ~, Y2 = ~tg 8. Therefore, this 
system is hyperbolic; its characteristics agree with the isostats. In conclusion, we note 
that the system of inequalities (2.11) should be adjoined to the system (2.19) and ('.2.20) as 

for s i # 0. 

3. Let us examine optimal designs corresponding to the vertex A i. In this case ~i = Pi, 
~2 = qi" From (i.i) and (1.5) we obtain 

h,~[(P i -[- qi) -l- (Pi - -  ~'i ) cos 20] -I- h,2(p i - -  qi) sin 20 ~- 2h(Pi - -  qi)(0,2 cos 20 - -  0,~ sin 20) -I- 2gJ~ - -  O, 
( 3 . 1 )  

h ' t (Pi  - -  qi) sin 20 -[~ h,2[(pi  -~ qi) - -  (Pi - -  qi ) cos 281 -t- 2h(p i - -  qi)(O,1 cos 20 ~- 0,2 sin 20) ~- 292h ~ O. 

Therefore, the system (3.1) is closed with respect to h, ~. For the vertex B of the Treska 
hexagon (see Fig. i), it is considered in 4 in the absence of mass forces. It is true that 
the coefficients are written down incorrectly (for h,~ in the first equation and forh,2 in the 
second the constant components Pi + qi were lost), which affected the type and subsequent 
solution of the system. 

The flow law for the vertex A i has the form 

~1 : )~ [Fa i_ l  -~  (t - -  ~Oai], ~ : ~ [ ~ d q _  1 -I- ( i  - -  ~t)b~], 0 ~< ~t ~< i ,  ~ > O. 

From the optimality condition k : gku]< + A, ~ = const. The mass forces are not generally 
assumed constant. Investigation of the system is substantially different in the following 
two cases. 

i. If Pi # qi' the equation of the characteristics (3.1) will be 

2h(pl - -  qi)[(Pi -~ qi) cos 20 ~,- ( P i  - -  q i  )]'I~2 - -  2(Pi  ~ qi)]? sin 20 ~- ( P i  - -  q i  ) - -  ( P f  - 'r  q i  ) COS 20  = O, 

from which 

7,,2 = [(P~ + qi) sin 20 ~_ 2~ /p~ l , / [ (p~  -~ qi) cos 20 -~ (Pi - -  qi)]" 

Therefore, the system (3.1) is hyperbolic for Piqi > 0, parabolic for Piqi = 0, and ellip- 
tical for Piqi < 0. 

2. If Pi = qi, we have the system 

for one unknown function. 

For compatiblity of (3.2), 

pih ,1  ~ glh ~ O, pih,2 ~ g2h = 0 

We write (3.2) in the form 

(Inh),1+glpF1= 0, (Inh) 2 § g2p[1= 0. 

it is therefore necessary that g~,2 : g2~lo 

(3.2) 

Upon satisfying this 

last conditionwe findln h by its total differential. ~en gl = g2 = 0 a disk of constant thick- 
ness will be the solution as in [3, 4]. 

4. As an illustration we examine a variable thickness rectangular slab one of whose 
sides is clamped in a vertical wall (Fig. 2). A normal force of intensity Y(x2) acting in 
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the plane of the slab is applied to the opposite side. The side ON is force-free and uni- 

formly distributed normal force of intensity F is applied to the side LM. A mass force P: 

gl = 0, g= = --p, where p is the density of the slab material, also acts on the slab. 

We assume that the regime AB of the Treska plasticity condition is realized in an opti- 

mal plate (see Fig. i). Then a i = i, b i = 0. We set ~ = 0 and ~ = 0 by virtue of (2.14). 
Hence gO = 0 and p = po, consequently, ~ = r ~ = ~o. Therefore, the optimal design is de- 

termined by (2.16). From the boundary conditions we obtain the forces T k and the relation 

between F and Y(x2) 
x 2 b 

0 0 

The inequalities (2.17) yield constraints on Y(x2) 

~2 

y (x2) ~ 0, p S r (x~) dx2 < y (x~), 0 < x= < b. 
0 

Furthermore, U11 = i, U=2 = U12 = U21 = VI = V2 = 0, hence % = %o = const. Taking account 

of the boundary conditions, we obtain u~ = XoXl, u2 = 0 from (2.7). 

For a specific example, we set IOL] = ION] = I, p = i, F = !, %o = i, Y(x2) = 2x2. Here 

h = 2x2 (see Fig. 2). 

5. A particular case of the problem under consideration is the problem of finding the 

minimal volume of a rotating disk. 

A circular annular disk with radius RI of the inner circle and R= of the outer circle 

is rotated at a constant angular velocity w* around an axis perpendicular to the plane of the 
disk and passing through its center. The disk boundaries are loaded by uniformly distributed 

, 
forces of intensity TI" and T2, or forces are given on one boundary while the velocities equal 

zero on the other. Find the disk thickness corresponding to minimal volume. 

Let r*, u r, Or, ~, Cr, ~0, P*, respectively, be the radius, radial velocity, principal 
stresses, principal strain rates, and material density of the disk. Let us turn to dimension- 

less: r = r*ro ~, u = Urtoro ~, ~ = ~*to, oi = ~rdo ~, ~= =d~o -I, El = ~rto, E2 = E~to, p = 
p*ro=to=do I, h = HHo I rk - ~k o , Ik = ik o no , where ~o, to, ro, Ho are the characteristic 
stress, time length, and thickness of the disk. The stresses o k satisfy the equilibrium equa- 

tion 
(h~),~ + h (~  - o,)/~ = -pco~rh, ( 5 . 1 )  

where the comma denotes differentiation with respect to r. 
expressed in terms of u 

~i ~ u,r~ 8 2 ~ u/r; 

The strain rate components are 

(5.2) 
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and we have for the quantity A 

A = oh8 h -- p ~ 2 r ~ .  

The case TI = 0, T2 > 0 was considered in [2] under Treska fluidity conditions. The 

optimality condition imposes a constraint on the set of allowable locations of the stress 

points on the flow hexagon. It is clarified that only the stresses representable by the 

points A, B, D, E can correspond to the velocity field subject to the condition A = const. 

The authors of [2] excluded the points D and E from consideration since Tx = 0, T2 > 0 and 

the point B since u = rE2 ~ 0 on the inner boundary in this case. It is impossible to 

agree with the last remark since the condition u < 0 is nowhere contradicted. An example 

will be presented below that shows that optimal designs exist for other boundary conditions, 
that work in the regime B for which this condition is nevertheless satisfied. In the case 

TI = 0 the point B should indeed be excluded from the considerations but for another rea- 
son: The general solution of (5.1) for the regime B is 

h = h o r - l e x p ( - - O , 5 p ~ r ~ ) ,  ho -- const, (5.3) 

consequently, h z 0 in the plate follows from the condition T~ = 0. For this same reason, 

regime A is indeed impossible for T~ = 0. Therefore, optimal solutions are not constructed 
successfully for the boundary conditions mentioned. It must be said that the very same 

condition TI = 0.is rather exaggerated for the problem of a rotating disk and does not re- 

flect the situation that is observed in real structures of this kind: either the displace- 

ment is zero on the inner boundary or a force different from zero is given, The authors 

tried to emerge artificially from the contradiction obtained by introducing and attaching 

an unreal flange of infinite height to the disk, but of finite meridian section area. More- 

over, by imposing the additional condition u r = 0 for r = r~, which does not result from 
the formation of the problem, the authors of [2] lost an arbitrary constant for integrating 

the equations for the velocities. This resulted in a constraint on the angular velocity of 
the disk p~2r~ < i. 

Let us construct examples of optimal disks for more natural boundary conditions for the 
same flow conditions. 

Let us consider the following boundary conditions 

u(~.~) = o , ( ~ h ) % ) =  T > 0. ( 5 . 4 )  

Assuming the optimal design of the disk to operate in the regime A, we have from (5.1) and 
the boundary condition for r = r2 

h = T exp [0.5 pm 2 (r~ --  r2)]. ( 5 . 5 )  

Then from the optimality condition 

U,r ~ u / r - -  p~2ru = A, h = const > 0 

and the boundary condition for r = r~ we obtain 

u :  / h p - l m - 2 r - l { e x p [ 0 " 5 p a ) ~ ( r - r ~ ) ] - t } "  o ) ~ 0 ,  

t 0 , s A  = 0. 

The inequalities ~ > 0, ~2 ~ 0 are satisfied for r ~ r~. There are no constraints on 

the disk .angular velocity. The volume V~ of the optimal disk is an increasing function of 
--I --2 2 

w V~ = 2vTp w {exp[0.5pw2(r~ -- r~)] -- i}, w # 0, Vo = vT(r~ -- r~) and limV~=V 0. Let us 
~O 

note that the solution obtained is also valid for a continuous disk when rl = 0. The con- 

dition u = 0 for r = 0 remains here from the requirement of axial symmetry. Graphs of the 
function V~/Vo are presented in Fig. 3 for values of the parameters r= = 3, T = p = A = i. 
Curves 1-3 correspond to the values r~ = 0, i, 2. 

In the case when forces T k are given on both disk boundaries, we have from (5.3) by 
assuming that the optimal design operated in regime B 

T h e r e f o r e ,  t h e  f o r c e s  T k s a t i s f y  t h e  r e l a t i o n s h i p s  T~r~  = T a r ~ e x p ( r ~  --  r ~ ) ,  T k > O. F r o m  
the optimality condition u r -- 0 ~ru = 5 we obtain the velocity field 

u = A -- e x p ( - -  0,5po~r ~) d r - - c  exp(0,5pm~r~), 
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A > 0, and c are arbitrary constants. The inequalities -- E~ ~ ~2 ~ 0 then are written in the 

form 
--A-- pCO ~ r ~  u / r ~ O ,  r l ~ r ~ r  2. 

It hence followS that c ~ 0 and the inequality 

r 2  " r 

f exp (-- 0,5pJr z) dr + c < 9(,)Zr 2 + t exp (-- O,5p(o2fi) ( 5 .6 )  

should be satisfied for r~ ~ r ~ r~. If this inequality is satisfied for a certain r for 

c ~ 0, the more so for c=0. Therefore we set c=0. Note then a strict inequality exists 

for r= r2 in (5.6) which also holds in a certain ring rl < r~r2 by Virtue of the con- 
tinuity of the functions in (5.6). Solving the inequality (5.6) for specific values of 
~, ~, r2, the lower bound r ~ can be found such that this inequality will be in any ring 

r ~ ~rl ~ r~ r2. 

A detailed investigation of the inequality (5.6) is omitted for brevity. The in- 

equality 
r 2 

~xp ( -  o , s p ~  ~) dr < (~  - ~) ~p  ( -  o,sp ~ )  
r 

evidently shows that (5.6) is a corollary of the stronger inequality 

(r2 --r)(P~2r 2 + i)~ r. 

For a specific example we set ~ = ~ = A = i, r2 = 2. The last inequality then takes the 

form 
S(r) ~ --r 3+ 2r2 - -  2 r +  2 ~ 0 .  

Since it is satisfied for r = 2 and r = 1.6 and the function S(r) is monotonic in the inter- 

val [1.6;2], then it is possible to set r~ = 1.6, T~ = exp(l.44) ~ 4.221, and T2 = 0.8, for 
example. All the necessary requirements for the existence of an optimal design are satis- 

fied here. 

6. A direction associated with the construction of equally strong (equally s~essed) 
designs has been developed actively in the last decade within the framework of searches 
for rational designs in addition to attempts to construct optimal designs in the sense 
examined above [13-17]. An analysis of their interrelationship is of interest, and we per- 
form it here in the example of a rotating disk. If the concept of equal-strength is in 

agreement with the concept of equal stress in the sense of ~ = o2 = 1 [13], then the 
thickness distribution for such a design agrees with (5.5) and the difference between the 
corresponding solutions will be that within the framework of the formulation examined above and 
the optimality condition will permit determination of the velocity field also, while the 
formulation of the problem of an equally stressed disk will not afford such a possibility. 
Another approach to the construction of equally strong designs [14-16] is based on solving 
the elastic problem with the additional requirement of satisfying the plasticity condition 
in the whole domain simultaneously. If the material is incompressible and subject to the 

Mises plasticity condition, then an equally strong elastic design is simultaneously a 
minimal weight plastic design [14]. However, it is difficult to construct the correspond- 
ing solution in ffhis case. We hence examine the problem of an equally strong design for 

a piecewise-linear'flow condition. 

We have the equilibrium equation (5.1), the relationship (512), and Hooke's law for 

an elastic disk 
ol = W - l ( ~ l + v ~ 2 ) ,  a~ = W-l(e~ + veil W ~ (1 -- v2)E -L  ~ _ (6.1) 

Here u, ~k are the dimensionless radial displacement and principal strains, E = E*~oXt~ ~ 
(E* is the Young's modulus), and ~ is the Poisson ratio of the material. Moreover, the 

plasticity condition (1.3) should be satisfied for an elastic equally strong disk. From 

(1.3), (5.2), (6.1) we have �9 

BI~,~ + Bo~/r : W, 

where B~ = a i + ~bi; B2 = b i + vai. The integral of this equation is 

u = ] ~ W B 7 1 r l n ( c l r  ), if B I + B  2=0 ,  
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where c~ is the constant of integration. Evaluating the stresses in displacements (6.2) 
and substituting the latter in the equilibrium equation, we determine the disk thickness 

h to the accuracy of a constant c~. The constants c~, c2 should be determined from the 

boundary conditions. In conclusion, the construction must confirm compliance with the in- 
equalities (2.11). 

In the case of an annular disk with boundary conditions (5.4), we obtain ~i = i, b i = 

0, B~ = i, B2 = v by assuming that the stresses in the disk correspond to the side AB of 
the Treska flow condition. Taking account of the first boundary condition from (5.4), we 
obtain from (5.2), (6.1), and (6.2): 

-- (~ - ~) ~-~ ( ~ -  ~ I + ~ F ~ ) ,  ~ ~ ~, ~ : ~ - (~  - ~) (~/,)'+~. 

Taking account of the second boundary condition from (5.4), we obtain the thickness of 
an equally strong plate from the equilibrium equation (5.1) 

�9 2 J 
(6.3) 

The inequalities (2.11) are satisfied for r m r~. For 0 < r~ ~ r < r2, 0 < ~ < 1/2 the 

thickness of this design is not less than the thickness of the corresponding optimal de- 
sign (5.5), where the thicknesses of both designs are equal just for r = r2. For r~ = 0, 

we have r = o2 = 1 and the thickness distributions of both designs are in agreement. Let 
U~ denote the volume corresponding to the design (6.3). We present a graph of the func- 

tion U~/V~ as a function of r~. Curves 1-3 in Fig. 4 correspond to ~ = I, 1.5, 2 with 

the constants v = 0.3, r2 = 2, p = T = I. As is seen, the equally strong disk has a volume 
exceeding the volume of the optimal disk constructed above. 

If the forces T k > 0 are given on both disk boundaries, then by assuming the stresses 
in the disk to correspond to the side AF, we obtain ~i = 0, b i = i, BI = ,0, B2 = I, while 

u ~ (I -- v)E-~(r + clr-~), ~ = i/'0 from (6.2). The corresponding stresses are ~ = i -- 
c~ -- i) r-~-~, ~2 ~ i. The inequalities 0 ~ ~ ~ 1 hold for 0 ~ c~ ~ (~ -- l)-~r~ +I. 
From the equilibrium equation and the boundary condition for r = r~ 

] p(') F 3+ + CIC I~  - -  i) 

L r~ 

where the constant cz is determined from the condition T2 = T~N r=r2- For example, w e  set 

o = ~ = T~ = i, "0 = 1/3, cz = 1/2, r~ = 2, r2 = 3. In this case the integral is easily 
evaluated and 

1~ 2 

I, 1 

O 0,5  1,0 1,5 7 ~ 

Fig. 4 

8, 
Z~ = N Ir=r~ - -  64 ~ e x p  - -  '_-2- ~ 0 .074.  

1 
I, il - r i 

0 0 ,5  1~0 1,5 r i 

Fig, 5 
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The volume of the obtained equally strong elastic disk will yield the upper bound for the de- 
sign of absolutely minimal weight since the stress field constructed is statically allowable 
[2]. 
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